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1.

Abstract

Interior seeing graphs of Jordan curves and two-dimensional closed surfaces are
proposed for the characterization of the shapes of chemical curves and surfaces.
Some of the relevant properties of seeing graphs, in particular, of seeing trees, are
described. The proposed applications of seeing graphs provide a molecular shape
characterization, by converting the continuum problem of a molecular contour
surface, for example, that ot an isodensity contour of molecular electronic charge
distribution, into a discrete problem of a graph. The dependence of seeing graphs
on the charge density contour value, a continuous parameter, is analysed. The
family of seeing graphs occurring within the chemically accessible range of charge
density contour valucs is proposed for a computer-based analysis of molecular
similarity. The general method is illustrated with the example of a detailed study on
the family of seeing graphs of the electronic charge density of the ethene molecule.

Introduction

In recent years, the spectacular advances of computer technology have provided
a new basis and additional stimulus to the search for new applications of mathematical
methods in chemistry. In addition to the more routine mathematical tools of
theoretical and computational chemistry, such as linear algebra, differential equations,
group theory, and optimization methods, some of the more modern branches of
both continuous and discrete mathematics are also finding important applications.
In this study, we shall address a chemical problem that involves both differential
geometrical [1,2] and graph-theoretical [3] concepts.
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One of the fundamental problems of modern theoretical chemistry and
research into computer-based drug design and molecular engineering is the concise
vet descriptive characterization of molecular shapes. The three-dimensional shapes
of contour surfaces of electronic charge densities, electrostatic potentials, molecular
orbitals, or Van der Waals surfaces can be calculated by various quantum chemical
or other methods (see, ¢.g. refs. [4~23]), and can be displayed on a computer screen.
Advanced computer graphics methods facilitate the characterization of molecular
shapes as well as the recognition of molecular similarity. However, these techniques
ultimately rely on visual inspection, which is both an advantage and a disadvantage.
Visual inspection is a very powerful tool for grasping some fundamental aspects of
shape and for guiding our intuition. However, it is not ideally suited for a tedious,
systematic analysis of a large number of fine details, and is certainly not the method
of choice if several thousand molecules are involved. It is desirable to develop mathe-
matical methods and computer algorithms that may follow up on an initial, visual
inspection and allow for a fully automatic computer analysis of shapes and molecular
similarity without direct human intervention.

The fundamental interrelations among the constituent components of a
physical system or mathematical model can often be represented by graphs [3,24].
Whereas graph theory provides an essentially discrete mathematical model. continuous
features may also be represented, for example, by invoking a dependence of graphs
on continuous parameters [25].

For the characterization of the shapes of continuous contour surfaces of
three-dimensional molecules, it is natural to apply continuum methods, often in
combination with the techniques of discrete mathematics. A family of shape group
methods, proposed recently [26—-30], is based on various decompositions of contour
surfaces drawn around molecules, followed by the generation of homology groups
of topological objects obtained from these contour surfaces. The resulting groups,
the molecular shape groups, are independent of the symmetry groups of molecules,
and provide a detailed characterization of the shape of both symmetric and asymmetric
molecules.

Our purpose is to present an alternative characterization of the shape of
continuous chemical curves and molecular surfaces, based on the concept of seeing
graphs [24]. This characterization is just as easily representable by the computer as
the one based on shape groups. Seeing graphs describe a somewhat different aspect
of molecular shape, and their conceptual elegance and simplicity are important
advantages in applications to the molecular problem.

2. The seeing graph of a Jordan curve
Here, we shall briefly review the definition and fundamental properties of

seeing graphs [24]. It will be shown by a simple proof that every tree is a seeing
graph of some Jordan curve. In the next section, the concept of a seeing tree will
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be generalized for closed two-dimensional surfaces, such as molecular contour surfaces,
important in drug design and computer-based engineering. Consider a Jordan curve J
of the plane 2R, and a set of points

called vertices, having the following properties:
(i) Each vertex v; is within the interior [ of J

v; €1, 1 €7 < m. (2)

(ii) Let J; denote the subset of curve J that can be “seen” from v;, that is, for
every point P € J; the interior of the straight line segment .Qp interconnecting
v; and P has no point common with J,

int Qp NJ = Q. (3)
We set the condition that the union of all subsets J; is the whole Jordan
curve J:

UJo=J. (4)

{iii) It all (Ui.l)!-) vertex pairs, where v; and v; see each other, are connected by
edges. then the resulting graph is connected.

{iv) m is the smallest integer for which conditions (i)--(iii) hold.

DEFINITION 1

A graph G(J) with the above properties (i)—(iv) for its vertices and edges is
called an interior seeing graph (or in short, seeing graph) of Jordan curve J.

DEFINITION 2 )

A tree T(J) obtained from a seeing graph G(J) by eliminating edges while
preserving connectedness is called an interior seeing tree (or in short, a seeing tree)
of Jodan curve J.

An illustration of a seeing graph G(J) and a seeing tree T(J) of a Jordan
curve J is given in fig. 1. Note that for the given Jordan curve J of the example,
condition (iii) of introducing edges for every pair of vertices that see each other
cannot lead to a tree for the minimum number m = 3 of vertices.

We shall prove the following realization result.
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SEEING GRAPH G(J)
OF JORDAN CURVE J

SEEING TREE T(J)
OF JORDAN CURVE J

Fig. 1. Mustration of the concepts of secing gruph G(J) and secing tree 7(J) ot
a Jordan curve J. Fach pair of bay regions of J requires a separate vertex vy, and tor
all possible locations of these vertices, they also see one another. Henee, the seeing
graph G (J) of this Jordan curve J (where all vertices that see one another are
connected by edges) is not a tree. By eliminating any one of the three edges of

G (J), onc obtains the sceing tree T(J).
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PROPOSITION 1

Each tree Tis a seeing tree of some Jordan curve J.

Proof

Take any straight-line-edge representation of an arbitrary tree T in the
Euclidean plane ?E£. where no two edges are collinear. The metric of 2E is denoted
by p. Define a distance d as

d = min{p(v;. Vi) iy, v € Ty v, # vj}. (%)
Take

ro=dl3 (6)
and draw circles S,. with radius r around each vertex v;

S; ={x €%E, p(v;, x) = rh. (7)

All these circles S; are disjoint and each has at least one intersection point
with an edge ¢, of 7. These points of intersections are denoted by Py, . Choose a small
positive number §.

0<o6<r (8)
and take the open disks D,
D = {x €L, p(Py, x) < 8} 9)

For a small enough § . all disks are disjoint.
Eliminate all points of the intersections

S; O Dy (10)

that open up "26-gaps" in each circle at every edge entering the circle. For each
edge ¢, define two lines parallel to e, at distance 6 on both sides of ¢, . For a small
enough & value, there are points on each circle S; which do not fall between any such
line pair. (This ensures that each vertex v; of T is needed for the resulting Jordan
curve for which T is a seeing tree.) For each edge ¢, retain only those points of the
corresponding pair of parallel lines which fall between circles §; and ;. where edge
¢, joins vertices v; and v;.
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CONSTRUCTION OF A JORDAN CURVE J FOR WHICH T IS A SEEING TREE

v
Vo 5
Vg
vy
Vg
Vi
v
v, 5
Vg
vy
Vg
Vi

d=p (v ,v )
1/ \\es D Sg

r=d/3 —

Fig. 2. Illustration of the construction of a Jordan curve J for an arbitrary tree T,
represented by straight line edges. For the explanation of the notation and further
details, see the proof of proposition 1 in the text.
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The resulting union of the points retained from the circles and parallel lines
form a Jordan curve J, for which the tree T is a seeing tree.
An illustration of the proof of proposition 1 is shown in fig. 2.

3. The seeing tree of a two-dimensional closed surface

The seeing tree of a closed surface is defined analogously to that of a
Jordan curve.

Let B be a closed two-dimensional surface that divides the three-dimensional
Euclidean space *E into two subsets: a bounded set F, referred to as the interior of B,
and an unbounded set, referred to as the exterior of surface B. Consider a family of
points called vertices

{Vii= 1, m (11)
with the following properties:

(i) v, EF, 1 <i<m. (12)

(i) Let B; C B denote the set of all those points of the surface B which are seen
from vertex v;, that is, for each point

pEB; (13)
there exists a straight line segment Qp that interconnects points v; and p, and

if point p is removed from this line segment Qp, then the remaining set SZp -p
is contained in F,

v;.p E Qp, (14)

9, CFUB, (15)
and

Qp -pCF. (16)

We set the condition that

m
U B; = B. (17)

i=1

(iii)  If all vertex pairs (v;, v].) for which v; and v; see each other within F are con-

nected by edges, then the resulting graph is connected.
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{ivy m s the smallest integer number for which a vertex set (11) fulfills properties
(i) (i),

DHEFINITION 3

A graph G(B ) having propertics (i)~ (iv) for its vertices and edges is an inrerior
secing grapht (or in short a seeing graphy of closed surfuce B.

DEFINITION 4

I{ enough cdges are omitted from G (£) so that the resulting graph remains
connected. one obtains a tree. the inrerior secing tree (orinshort, seeing tree) T{B) of
closed surtfuce B,

By replacing the circles S, of radius 7 and the parallel lines of distance 26 with

spheres °S, ol radii 7 and evlinders of radius 6. respectively, the proof of proposition 1

cun be wencratized to the case of two-dimensional surfaces B.

PROPOSITION 2
Any tree 71s a seeing tree of some closed surface B.

The concepts of a seeing graph and a seeing tree can be generalized in many
wavs. For the purposes of molecular shape characterization. exterior sceing graphs
and exrerior seeing trees appear uselul, us well as bipartite secing graphs, where the
vertes sets of the bipartition correspond to the sets of interior and exterior vertices.
Such sceing graphs ure advantageous for the description of molecular shape as
recognized by an approaching reagent, an aspect of importance in the study of
reaction mechansims [31,32]. Secing graphs may also provide useful alternatives
for studying visibility” problems [33], important. for example, in the design of
computer circuits. These and other generalizations will be discussed in a forthcoming
study s in the present paper. we shall Hlustrate the application of interior seeing graphs
and interior seeing trees,

4. Seeing graphs of contour surfaces of molecular electron density
as a tool for molecular shape characterization

The shape of an isodensity contour surface B of a molecule of a specified
electronic state depends on the density value p of the contour and on the mutual
arrangement of the nuclei. Within the Born —Oppenheimer approximation, one may
give a formal definition to the classical concepts of nuclear geometry K and internal
nuclear configuration space M. that is a metric space which can be represented by a
manifold with boundary [32]. Consequently, the seeing graph G(B(p, K)) is also a
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function of the electron density contour value p. as well as the nuclear configuration A,

By considering all possible nuclear configurations for a fixed stoichiometry and all
. . ~ 7

possible density values p.one may define a product space D as

D'=p®M. (18)

(Note that the notation of space D refers to the tact that it is a subspace of the
dynamic shape space D int wduwd in [25) O Edidently, tor a specified electronic
state. the seeing graphs G{B{p, A )} arc invariant within certain domains of D'
that is. they remain unchanged for certain limited variations ot the nuclear configura-
tion A and contour density value p. Space D' s mrlit‘emcd into the invariance

domains D ((, f'seeing graphs G, which occur within D'
k
D' = U DG (19)
i=1 :
where
DG N DG = O (20)

The characterization probleny s considerably shimpler i only o single. fixed
nuclear configuration A € 1/ is studied. A set of sceing graphs G occurring for
the given nuclear u‘:nﬂguratmn K. as the electronic charge density contour value p

changes from p, = Py 10 B = P — O-is denoted by GIK)

G(R) =(G (KL Gy (K)o Gy (A)). (20
where

(}j([\'):(,’(p,/\’) for P, €§p<p]». (22

[n the above expression, the contour density values p; are critical since the seeing
graphs G{p, Ky undergo changes precisely at these densities. The finite set G(A')
provides a shape characterization of the entire, three-dimensional clectron distri-
bution of the molecule of the specitied nuclear configuration XK.

5. Example: Electron density contour surfaces and seeing graphs
of the ethene molecule

In fig. 3. selected electron density contour surfaces and characteristic cross-
sections are shown for the C,H, molecule. The data for the construction of these
plots have been taken from {34,35]. The nuclear configuration K is assumed to be
fixed at the equilibrium geometry. The charge density values for the contours are
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ELECTRON DENSITY CONTOUR SURFACES AND SEEING GRAPHS OF THE
C2H4 MOLECULE

ST T
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Electron density contour surface

of CoHy for p=025e/(su)’

Electron density contour surface

of CyHy for p=0.02e/(au)’
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FFig. 3. Isodensity contour surfaces and their cross-sections calculated for the ethene molecule.
Contour plots and data are reproduced with permission from ref. [34]. The contour at a high
electronic charge density value p = 0.40 e/(a.u.)® shows only two spherical components about the
two carbon atoms; the corresponding seeing graph has only two isolated vertices. As the charge
density contour value is gradually decreased, the contours about the four hydrogen nuclei appear
and eventually merge with the contour about the carbon nuclei. In the process, more complicated
seeing graphs appear as the shape of the contour surface exhibits more fine detail. However,
eventually the contour surface at low electronic densities far from the nuclei become simpler and

more spherical, and the seeing graph reduced to a single vertex.
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p =040, 0.30, 027, 0.25,0.20, 0.08, 0.04, and 0.02 in atomic units of electronic
charge over bohr?®, ¢/(a.u.)®.

For the high density contour value of 0.40, there are two, separate spherical
contours about the two carbon nuclei, and the four hydrogens do not appear: the
highest electron density about the hydrogens is less than this contour value. The
seeing graph contains only two vertices and no edges. At the next contour value of
0.30, the four hydrogens appear as four, separated spherical contours, and the two
carbon nuclei are surrounded by a single contour. Viewing the entire interior of this
contour is not possible from a single location, and the seeing graph of this maximum
connected component of the molecular contour has a seeing graph of two vertices,
connected by an edge. This edge is the only one in the seeing graph of this molecular
contour surface. At the next density value of 0.27, the molecular contour surface is
still disconnected and has five components; however, the seeing graph is simpler, since
a single vertex is sufficient for viewing the interior of the entire surface component
surrounding the two carbon nuclei. The seeing graph has five vertices and no edges.
At the density value of 0.25, the contour surface, hence also the seeing graph, is
already connected. Since the parts of the contour about the hydrogens are joined
to the central part through rather narrow tubes, the seeing graph for this contour
density must have six vertices, roughly corresponding to the six nuclei, whereas the
five edges interconnecting these vertices mimic the conventional bond pattern of
the ethene molecule. At the density value of 0.20, the above tubes are much broader
and four vertices are sufficient: one obtains the complete seeing graph K,. At the
lower density value of 0.08, the contour surface shows less detail, it is “swollen”
compared to the contours above, and the two-vertex seeing graph K, is obtained.
At the low density values of 0.04 and 0.02, the contour surfaces are rather “"round”
and the seeing graph is just a single vertex K, .

By listing all seeing graphs obtained for a fixed nuclear configuration K, a
detaiied characterization of the molecular shape can be given. The concept of seeing
graphs provides a discrete characterization of a continuous, three-dimensional
function, describing the molecular shape. Information on seeing graphs can be easily
stored in a computer, and a comparison of molecular shapes for a sequence of com-
pounds

X Xy X,

can be accomplished by comparing sets

Gy, Gy,o. ., Gy
of their respective seeing graphs. Hence, the study of molecular similarity, with
reference to the three-dimensional “body” of molecules, can be formulated in elegant
graph-theoretical terms.
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