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Abstract 

Interior seeing graphs of Jordan curves and two-dimensional closed surfaces are 
proposed for the characterization of the shapes of chemical curves and surfaces. 
Some of the relevant properties of seeing graphs, in particular, of seeing trees, are 
described. The proposed applications of seeing graphs provide a molecular shape 
characterization, by converting the continuum problem of a molecular contour 
surface, for example, that of an isodensity contour of molecular electronic charge 
distribution, into a discrete problem of a graph. The dependence of seeing graphs 
on the charge density contour value, a continuous parameter, is analysed. The 
family of seeing graphs occurring within the chemically accessible range of charge 
density contour values is proposed for a computer-based analysis of molecular 
similarity. The general method is illustrated with the example of a detailed study on 
the limtily of seeing graphs of the electronic charge density of the ethene molecule. 

1. Introduction 

In recent years, the spectacular advances of computer technology have provided 
a new basis and additional stimulus to the search for new applications of inathematical 
methods in chemistry. In addition to the more routine mathematical tools of 
theoretical and COlnputational chemistry, such as linear algebra, differential equations, 
group theory, and optimization methods, some of the more modern branches of 
both continuous and discrete mathematics are also finding important applications. 
In this study, we shall address a chemical problem that involves both differential 
geometrical [1,2] and graph-theoretical [3] concepts. 
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One of the fundamental problems of modern theoretical chemistry and 
research into computer-based drug design and molecular engineering is the concise 
yet descriptive characterization of molecular shapes. The three-dimensional shapes 
of contour surfaces of electronic charge densities, electrostatic potentials, molecular 
orbitals, or Van der Waals surfaces can be calculated by various quantum chemical 
or other methods (see, e.g. refs. [4-. 23] ), and can be displayed on a computer screen. 
Advanced computer graphics methods facilitate the characterization of molecular 
shapes as well as the recognition of molecular similarity. However, these techniques 
ultimately rely on visual inspection, which is both an advantage and a disadvantage. 
Visual inspection is a very powerful tool for grasping some fundamental aspects of 
shape and for guiding our intuition. However, it is not ideally suited for a tedious, 
systematic analysis of a large number of fine details, and is certainly not the method 
of choice if several thousand molecules are involved. It is desirable to develop mathe- 
matical methods and computer algorithms that may follow up on an initial, visual 
inspection and allow for a fully automatic computer analysis of shapes and molecular 
similarity without direct human intervention. 

The fundamental interrelations among the constituent components of a 
physical system or mathematical model can often be represented by graphs [3,24]. 
Whereas graph theory provides an essentially discrete lnathematical model, continuous 
features may also be represented, for example, by invoking a dependence of graphs 
on continuous parameters [25]. 

For the characterization of the shapes of continuous contour surfaces of 
three-dimensional molecules, it is natural to apply continuum methods, often in 
combination with the techniques of discrete mathematics. A family of shape group 
methods, proposed recently [ 2 6 - 3 0 ] ,  is based on various decompositions of contour 
surfaces drawn around molecules, followed by the generation of homology groups 
of topological objects obtained from these contour surfaces. The resulting groups, 
the molecular shape gn)ups, are independent of the symmetry groups of molecules, 
and provide a detailed characterization of the shape of both symmetric and asymmetric 
molecules. 

Our purpose is to present an alternative characterization of the shape of 
continuous chemical curves and molecular surfaces, based on the concept of seeing 
graphs [24]. This characterization is just as easily representable by the computer as 
the one based on shape groups. Seeing graphs describe a somewhat different aspect 
of  molecular shape, and their conceptual elegance and simplicity are important 
advantages in applications to the molecular problem. 

2. The seeing graph of a J ordan curve 

Here, we shall briefly review tile definition and fundamental properties of 
seeing graphs [24]. It will be shown by a simple proof that every tree is a seeing 
graph of some Jordan curve. In the next section, the concept of a seeing tree will 
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be generalized for closed two-dimensional surfaces, such as molecular contour surfaces, 
important in drug design and computer-based engineering. Consider a Jordan curve J 
of the plane 2R, and a set of points 

{vi}i= 1,,n (1) 

called vertices, having the following properties: 

(i) Each vertex v i is within the interior I of J 

v i c I ,  1 -<. i <~ m. (2) 

(ii) Let ,~. denote the subset of curve J that can be "seen" from v i, that is, for 
every point P C Yi the interior of the straight line segment ~p interconnecting 
v i and P has no point common with J, 

int ~p c~ J = O. (3) 

We set the condition that the union of all subsets d i is the whole Jordan 
curve d : 

u Ji = J. (4) 

(iii) If all (v i , v / )  vertex pairs, where v i and v/ see each other are connected by 
edges, then the resulting graph is connected. 

(iv) m is the smallest integer for which conditions (i)- (iii) hold. 

DEI:INITION 1 

A graph G ( J )  with the above properties ( i ) - ( iv)  for its vertices and edges is 
called an interior seeing graph (or in short, seehlggraph) of Jordan curve Y. 

DEFINITION 2 

A tree T ( J )  obtained from a seeing graph G ( J )  by eliminating edges while 
preserving connectedness is called an interior seeing tree (or in short, a seeing tree) 
of Jodan curve ,1. 

An illustration of a seeing graph G ( J )  and a seeing tree T ( J )  of a Jordan 
curve J is given in fig. 1. Note that for tile given Jordan curve J of the example, 
condition (iii) of introducing edges for every pair of vertices that see each other 
cannot lead to a tree for the minimum number m = 3 of vertices. 

We shall prove the following realization result. 
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.D 
I SEEING GRAPH O(J) 

OF JORDAN CURVE J 

Vl V 3 

) [ SEEING TREE T(J) 

/ OF JORDAN CURVE J 

F'ig. 1, I l lustrat ion of the concepts  of seeing graph G(J) and seeing lre~ T ( J ) o l  
a Jorctan curve J. Iiach pair of bay regions of d requires a separate verte× t~'i, and for 
all possible locations of  these vertices, they also see one another .  Hence, the seeing 
graph G(J) of this Jordall  curve J (',\here all vertices thai see one :mother  are 
connec ted  by edges) is not  a tree. B3 el iminat ing any one of the three edges of 
G(J), o n e  obtains  the seeing tree T(J). 
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PROPOSITION 1 

Each tree Tis a seeing tree of some Jordan curve J. 

Pi'v of 

Fake any straight-line-edge representation of an arbitrary tree T in the 
Euclidean plane 2E, where no two edges are collinear. The metric of 2E is denoted 
by p. Define a distance d as 

d = nlin{D(u i, o/):  ui, vj ~ V ( T ) ,  V i ~ Uj}. (5) 

-fake 

r = d / 3  (6) 

and draw circles S i with radius r around each vertex vi: 

S i = {x  ~ 2E, p ( v  i, x) = r}. (7) 

All these circles S i are disjoint and each has at least one intersection point 
with an edge e k of T. These points of intersections are denoted by Pik. Choose a small 
positive n umber 8. 

0 < 6 ~ r  t8) 

and take the open disks Dik 

Dik = {x C 2E, P(Pik,  x) < 8}. (9) 

For a small enough fi, all disks are disjoint. 
Eliminate all points of the intersections 

S i C~ Dik (10) 

that open tip "26-gaps" in each circle at every edge entering the circle. For each 
edge ek, define two lines parallel to %, at distance 6 on both sides of e k. For a small 
enough 6 value, there are points on each circle S i which do no t  fall between any such 
line pair. (This ensures that each vertex o i of T is needed for the resulting Jordan 
curve for which T is a seeing tree.) For each edge ek, retain only those points of the 
corresponding pair of parallel lines which fall between circles S i and SI ,  where edge 
e k joins vertices o i and oj. 
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CONSTRUCTION OF A JORDAN CURVE J FOR WHICH T IS A SEEING TREE 

V V 5 

V 4 

6 

V 3 

171 

d=p (v 1 ,v2 
/ 

r = d / 3  / 

~ "~e s D S 
6 

6 5 

Fig. 2. Illustration of the construction of a Jordan curve J for an arbitrary tree T, 
represented by straight line edges. For the explanation of the notation and further 
details, see the proof of proposition 1 in the text. 
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form a 

. 

The resulting union of the points retained from the circles and parallel lines 
Jordan curve J, for which the tree T is a seeing tree. 
An illustration of the proof of proposition 1 is shown in fig. 2. 

The seeing tree o f  a t w o - d i m e n s i o n a l  c losed surface 

The seeing tree of a closed surface is defined analogously to that of a 
Jordan curve. 

Let B be a closed two-dimensional surface that divides the three-dimensional 
Euclidean space 3E into two subsets: a bounded set F, referred to as the interior of B, 
and an unbounded set, referred to as the exterior of surface B. Consider a family of 
points called vertices 

{vi}i=l,m 

with tile following properties: 

(i) v i E F ,  1 ~< i ~< m. 

(ii) 

(1 1) 

(12 ) 

Let B i C B denote the set of all those poi.ts of the surface B which are seen 
from vertex vi, that is, for each point 

l ) E B i (13) 

there exists a straight line segment ~p that interconnects points v i and p, and 
if point p is removed from this line segment P~p, then the remaining set ~p - p 
is contained in F, 

vi, p E ~p, (14) 

~p C F O B ,  (15) 

and 

~ p - p C  F. (16) 

We set the condition that 

m 

U B i = B. (17) 
i = l  

(iii) If all vertex pairs (v i, vj) for which u i and vj see each other within F are con- 
nected by edges, then the resulting graph is connected. 
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m is the smallest integer number for which a vertex set (11) fulfills properties 
¢i} (iii), 

l)l I'INII'ION 3 

,\ graph (;(Blhavingpropertics(i ')( iv) for its vertices and edges is an inmrior 
.s'c'ciHg Xeal)h (,~r iH sho~t, a .~c~ in e* gr~q)tz ) o f  closed surface B. 

1)I I]NI F1ON 4 

1i enough edges are omitted flora G ( B ) s o  that tile resulting graph remains 
connected, one obtains a tree, the ire'driver seeing grec (or in short, seci~g tree) T(B ) of 
ci~scd sLu-l;lce 1;'. 

B\ replacing the circles S i <~l" radius J and the parallel lines of distance 2~'; with 
sphere  e~<,' i olraldii r :mdc\ l i l ldersofradiuseS.respect ively , t lLeproofofproposi t iorL 1 
c;m I>e gcnc~:ili/ed {o the c;,se ~t t\~o-dimci~sional surl'aces B. 

Pl,~i) '()S1 l ION 2 

~ , , ;  tree 7' is a seeing tree of  some closed surface/3. 

l-he coi~<epts ~1 'a ~¢eemg graph and a seeing tree can be generalized in many 
\',a~3s. I :~  lhe pt,q~<<s of molecular slmpe charactcrizati(m, evrc,i~)r sc, eing graphs 
H~d c.\'md~," v~,cina: Zrc'c:~ appe:lr usef~l, as well as bipartite seeing graphs, where tl~e 
e r i e , ,  sets t)t tile bipa,tition correspond to the sets of interior and exterior vertices. 
Such scci~g graphs are adxantageous for the description of molecular shape as 
~ecognized by an ipproaching reagellt, an aspect o1" importalLce m the study of 
rcaclion meci~msims l a l , ~ _ ] .  Seeing graphs may also provide useful alternatives 
f<~l s~tldying "~isibiliI3" problems [33], impoltant ,  for example, in the design of 
comr, uter ci,cmts. These alld other gclLeralizations will be discussed in a forthcoming 
staid3 in the p~escnt paper, we shall illtlstrate tile application (q'interior seeing graphs 
a~d interior seeiHg trees. 

. Seeing graphs of  contour  surfaces of  molecular electron density  
as a tool  for molecular shape characterization 

]he  shape of aJl is~density contour surlhce B of a molecule of a specified 
electronic state depends tm the density value p of the contour and on the mutual 
arrangement of" the nuclei. Witllin the Born Oppenheimer approximation, one may 
give a formal detmition to tile classical concepts of ~uclear geometry K and internal 
J~uclear coHfiguration space M, that is a metric space which can be represented by a 
maififold with boundary [32]. Consequently, the seeing graph O(B(p,  K))  is also a 
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function of  the electron de~sity contour value p. as,.vell as tile nuclear configuration K. 
By considering all possible nucleur c<~nfiguru*io/~s f~r a fixed stoichiometrv and all 
possible density ~alues p, one ma,~ det]~le a p~oduct space D'  . . . .  as 

L)' = p @ M. (18)  

(Note that the notati{m ~t spice D'  reters t<~ tile lad tiler it is u subspace oI the 
dynamic shape space D ii~trvduced in [2512) 1: idellt/>, For 'a specified electlonic 
state, tlle seei~lg grapl,s ( ; (B(p,K))  arc ~,,aliant v. ithin certain domains of D'.  
that is. they remain uncharlged for certaiu limited ~ariations of  the nuclear confia~u-a 
tion K 'and contour delisit> xalue p. Space 1)' is partitit>l~ed into the mvariance 
dommns D'(G i) of seeing graphs (;/ which occur within D' : 

where 

k 

D' = U D'((;/). 
/::1 

O'((;i)  ¢ D'((; k / = O . 

(19) 

(20) 

lhe char:lctcrixltiem t-~lublem is c<~llddclabl3 sii~lpler i f  ollly a single, fixed 
nuclear " " coutlguratior~ K C2 'lI is studied. A set of seeiug graphs G/ occurring for 
the give,l mlclear c~mfigurati~m K. as the electro, me charge dei~sity contour  value /) 

c h a l l g c s  l'r~.>lll P*I = P ~ a x  tO Pm = P m i n  0. is den~ted by ( T t K )  

W h e re 

C ( K  ) = ((;~ ( K  I, (;a ( K  ) . . . .  : C; m t K  }), (21) 

( ; i ( K )  = ( ; ( p , K )  i'or p/_~ ~.'.:~p < p j .  (22} 

In tile above expression, the omto/ i r  dcnsi[y values p~ tire critical sil~cc tile seei~ G 
graphs G(p, K) undergo cl~:mge precisely at these d<~sitics. The fimte set G(K) 
provides a sllapc characterizatiou of  tl~e e~tire, thlee-dimensional electron distri- 
butiou of the molecule of the specified i~uclear col,figuraiio,~ K. 

. E x a m p l e :  E l e c t r o n  d e n s i t y  c o n t o t ,  r sur faces  and see ing  graphs  

o f  the  e t h e n e  m o l e c u l e  

In fig. 3, selected electron density contour surfaces and characteristic cross- 
sections are showu for lhe C2H 4 molecule. The data for tile constructiou of  these 
plots have been takell from [34,35] .  The 1~ucleal configuratioli K is assumed to be 
fixed at the equilibrium geometry.  The chalge dei~sity values for the contours are 



386 
ELECTRON DENSITY CONTOUR SURFACES AND SEEING GRAPHS OF THE 

C2tt 4 MOLECULE 

~do--% 

Electron density contour surface 

of C2H. I for p=0.25el(a.u.) 3 

Electron density contoul- surf,~ce 

of C2H 4 for p=0.02 e/(a,u.) "~ 

-P-I Crossecti orq 
of contour  / 

G " 

"$, ® 

~ c~ 

~ A 
w v 

• I 

(.) @ 

>.,.L _-_ 

[] Crossection 

of corltour .J 

Fig. 3. Isodensity contour surfaces and their cross-sections calculated for the ethene molecule. 
Contour plots and data are reproduced with permission from ref. [34]. The contour at a high 
electronic charge density value 0 = 0.40 e/(a.u.) a shows only two spherical components about the 
two carbon atoms; the corresponding seeing graph has only two isolated vertices. As the charge 
density contour value is gradually decreased, the contours about the four hydrogen nuclei appear 
and eventually merge with the contour about the carbon nuclei. In the process, more complicated 
seeing graphs appear as the shape of the contour surface exhibits more fine detail. However, 
eventually the contour surface at low electronic densities far from the nuclei become simpler and 
more spherical, and the seeing graph reduced to a single vertex. 
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p = 0.40, 0.30, 0.27, 0.25, 0.20, 0.08, 0.04, and 0.02 in atomic units of electronic 
charge over bohr 3 , e/(a.u.) 3 . 

For the high density contour value of 0.40, there are two, separate spherical 
contours about the two carbon nuclei, and the four hydrogens do not appear: the 
highest electron density about the hydrogens is less than this contour value. The 
seeing graph contains only two vertices and no edges. At the next contour value of 
0.30, the four hydrogens appear as four, separated spherical contours, and the two 
carbon nuclei are surrounded by a single contour. Viewing the entire interior of this 
contour is not possible from a single location, and the seeing graph of this maximum 
connected component of the molecular contour has a seeing graph of two vertices, 
connected by an edge. This edge is the only one in the seeing graph of this molecular 
contour surface. At the next density value of 0.27, the molecular contour surface is 
still disconnected and has five components; however, the seeing graph is simpler, since 
a single vertex is sufficient for viewing the interior of the entire surface component 
surrounding the two carbon nuclei. The seeing graph has five vertices and no edges. 
At the density value of 0.25, the contour surface, hence also the seeing graph, is 
already connected. Since the parts of the contour about the hydrogens are joined 
to the central part through rather narrow tubes, the seeing graph for this contour 
density must have six vertices, roughly corresponding to the six nuclei, whereas the 
five edges interconnecting these vertices mimic the conventional bond pattern of 
the ethene molecule. At the density value of 0.20, the above tubes are much broader 
and four vertices are sufficient: one obtains the complete seeing graph K 4 . At the 
lower density value of 0.08, the contour surface shows less detail, it is "swollen" 
compared to the contours above, and the two-vertex seeing graph K 2 is obtained. 
At the low density values of 0.04 and 0.02, the contour surfaces are rather "round" 
and the seeing graph is just a single vertex K 1 . 

By listing all seeing graphs obtained for a fixed nuclear configuration K, a 
detaiied characterization of the molecular shape can be given. The concept of seeing 
graphs provides a discrete characterization of a continuous, three-dimensional 
function, describing the molecular shape. Information on seeing graphs can be easily 
stored in a computer, and a comparison of molecular shapes for a sequence of com- 
pounds 

X l ,  2 2 . . . .  , X p  

can be accomplished by comparing sets 

G1, a 2 . . . . .  ap 

of their respective seeing graphs. Hence, the study of molecular similarity, with 
reference to the three-dimensional "body" of molecules, can be formulated in elegant 
graph-theoretical terms. 
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